signal bandwidth of 16.5 GHz was achieved by reducing the laser parasitics and enhancing the resonance frequency. This result indicates that the lasers with this structure are suitable for a light source of 10 Gbit/s optical communication systems.

Acknowledgments: The authors would like to thank T. Sawada, Y. Muto and I. Uchikazi for useful discussions and encouragement, and M. Morinaga and Mr. K. Shiraiishi for high-speed measurement.

T. MATSUYAMA
M. KOBAYASHI
A. MAKUTA
Toshiba Electronic Engineering Corp.
Somaichiko bldg., Yagoto, Yokohama 235, Japan

References

UNDETECTED ERROR PROBABILITIES OF CODES FOR SINGLE-ERROR CORRECTION AND ERROR DETECTION

Indexing terms: Information theory, Codes and coding, Error-correction codes, Error detection codes

It is shown that the probabilities of undetected errors for maximum-length codes are upper bounded by 2^{-n-1}, if the codes are used for correcting every single error and detecting other errors over a binary symmetric channel of which the transition probability p is less than $1/2$. Moreover, it is shown that binary linear codes with poor distance property do not satisfy the aforementioned bound.

Introduction: In pure ARQ systems, linear codes are used solely for detecting errors. Suppose that we apply codes to a binary symmetric channel (BSC) with transition probability p. It has been proven that for each e with $0 < e < 1/2$, there exists an (n, k) binary linear code whose probability of undetected errors (PUDE) is upper bounded by 2^{-n-1}. Hamming codes and double-error-correcting BCH codes have been proved to satisfy the upper bound in Reference 3. It was shown that binary linear codes with poor distance property used for pure error detection will have their PUDE exceed the bound of 2^{-n-1} for certain values of e.

Pure ARQ systems have the problem of low throughput when e is high. Therefore, some hybrid ARQ systems are proposed to increase the throughput. In hybrid ARQ systems, we usually require linear codes for correcting some low weight error patterns and detecting many other error patterns.

Hence, it is interesting to study the PUDE of linear codes which are used for both error correction and detection. In Reference 4, the class of $(n, k, d > 3)$ systematic binary linear codes which can be used for correcting every single error and detecting other error patterns has been studied. It was shown that for each e, $0 < e < 1/2$, there exists a code whose PUDE is upper bounded by 2^{-n-1}. However, it is shown that binary linear codes with poor distance property do not satisfy the aforementioned bound. Moreover, it is shown that binary linear codes with poor distance property do not satisfy the aforementioned bound.

References

ELECTRONICS LETTERS 21st November 1991 Vol. 27 No. 24

2264
It follows from eqns. 7 and 9 that to show that the errors. We have
Substituting
Taking the antilog (base 2) of both sides of eqn. 6 results in
Because
We say that an
The Gilbert-Varshamov bound states that there exists an
for correcting every single error and detecting other errors.
where \(0 \leq \varepsilon \leq \frac{1}{2} \) and \(H(\varepsilon) \) is the binary entropy function. We say that an \((n,k) \) code falls below the asymptotic Gilbert-Varshamov bound if
Suppose that \(V \) is such a code. Clearly, we have

\[
\frac{k}{n} < 1 - H(\varepsilon) \quad \text{for} \quad n \geq \varepsilon d(n)
\]

Thus, we have shown that the PUDE of \(V \) will exceed \((n+1) \cdot 2^{-(n-k)} \) for \(\varepsilon = d/n \) if \(V \) is used for correcting every single error and detecting other errors.

Acknowledgement: This research was supported by the National Science Council of the Republic of China under grant NSC 80-0404-E002-04.

M.-C. LIN
24th September 1991
Department of Electrical Engineering
National Taiwan University
Taipei 10764, Taiwan, Republic of China

References
1. KORZUK, V. I.: 'Bounds on undetected error probability and optimum group codes in a channel with feedback'. Radiotechnika, 1965, 29 (1), pp. 27-33

GaAs VERTICAL pin DIODE USING MeV IMPLANTATION

Indexing terms: Diodes, Semiconductor devices and materials

Vertical **pin** diodes were fabricated using MeV Si/Si co-implantation and keV Be/P co-implantation into undoped semi-insulating GaAs to obtain buried \(n^+ \) and surface \(p^+ \) regions, respectively. An exploratory device with a \(500 \times 500 \mu \text{m}^2 \) junction area and a \(3 \mu \text{m} \) thick intrinsic region has a breakdown voltage of \(70 \text{V} \), reverse leakage current density of \(40 \mu \text{A/cm}^2 \) at \(20 \text{V} \), an off-state capacitance of \(3.9 \text{nF/cm}^2 \) and a DC forward current of \(2 \, \text{mA} \) at \(100 \, \text{mA} \).

For high-power microwave switching, **pin** diodes are preferred over MESFETs due to their higher breakdown voltage, lower on-state resistance, and lower off-state capacitance. Presently vertical GaAs **pin** diodes are fabricated from material grown by epitaxial techniques. \(^1\) However, **pin** diodes made with epitaxial techniques cannot be easily integrated into a planar monolithic circuit. It would be useful to be able to make **pin** diodes (**pins** with direct ion implantation into semi-insulating GaAs.) Implanted **pins** would be planar structures which could be selectively fabricated on a single chip with other types of analogue and digital device. Conventional ion implantation cannot be used to make vertical **pin** structures, but in recent years a high energy implantation technology has been developed for GaAs. \(^2\) It is now possible to implant Si and/or S into GaAs with energies of up to 20 MeV, in a manner compatible with integrated circuit manufacturing techniques. Si or S implants at 20 MeV energy have a range of \(\sim 0.2 \mu \text{m} \) in GaAs and hence buried \(n^+ \) layers suitable for **pin** diode fabrication can be produced.

In this study we fabricated **pin** diodes made by using MeV energy Si/S co-implantation and keV energy Be/P co-implantation into Si GaAs to obtain \(n^+ \) and \(p^+ \) layers, respectively. The Si/S co-implantation is used to obtain a high peak \(n \)-type carrier concentration. \(^3\) The Be/P co-implantation is used to minimise Be indiffusion during annealing. \(^4\) The cross-sectional view of the structure investigated in this exploratory study is shown in the inset of Fig. 1. The junction area is \(500 \times 500 \mu \text{m}^2 \). The large dimensions were chosen for convenience and do not represent practical device values. **Pin** diodes (D1 and D2) of different \(i \)-layer thicknesses were fabricated by...